

Synthesis of novel chromogenic bi- and tri-functionalized calix[4]arenes

Hatem Halouani, Isabelle Dumazet-Bonnamour* and Roger Lamartine

Laboratoire de Chimie Industrielle, UMR CNRS 5078, Université Claude Bernard-Lyon1, 43 Bd du 11 November 1918, 69622 Villeurbanne Cedex, France

Received 9 April 2002; accepted 10 April 2002

Abstract—Novel azo-calix[4] arenes have been prepared by the incorporation of both ester and amide groups. Six bis(phenylazo)-O-substituted calix[4] arene derivatives were isolated and fully characterized. NMR analyses show that these compounds are in cone conformation in solution at room temperature. © 2002 Elsevier Science Ltd. All rights reserved.

In a recent report,¹ we have described the synthesis of five novel azocalix[4]arenes. By selective O-substitution on the lower rim of chromogenic calix[4]arene, 2,2'bithiazoyl-azocalixarenes were isolated, characterized in order to study their conformation in solution and their complexation properties towards metals. Concerning these last points, when calixarenes are properly functionalized, their conformational mobility is restricted, allowing a well-defined position of functional groups for complexation.^{2,3} Furthermore, esters, acetones and amides which have been largely studied as complexation sites on calixarenes, display interesting properties of complexation towards alkaline,⁴ alkaline earth⁵ lanthanide⁶⁻⁹ and transition metals,¹⁰⁻¹² due to the convergent location of donor atoms. Moreover, azo groups bring to calixarenes a chromogenic activity.^{13,14}

Thus, these studies led us to the preparation of six new $bis(azo)calix[4]arenes L_1, L_2, L_3, L_4, L_5 and L_6 incorporating both ester and amide functions and the examination of their conformation in solution. 4-Nitrophenylazo and phenylazo groups were graft on the upper rim of calixarenes and glycine units on the lower rim providing additional donor atoms.¹⁵$

We have developed a strategy in three steps which permit to obtain the ligands L_{3-6} incorporating two azo groups on the upper rim and both amide and ester functions on the lower rim of calix[4]arene with a retention of the cone conformation.

The first intermediate $\mathbf{L_0}$,¹⁶ which is a key reactant for the formation of both $\mathbf{L_1}^{17}$ and $\mathbf{L_2}$,¹⁷ was chosen in order to block the two distal hydroxy groups of calix[4]arene (Scheme 1). Thus, using conventional copulation procedure,¹⁸ $\mathbf{L_1}$ and $\mathbf{L_2}$ can be obtained, respectively in 52 and 40% yields.

Calix[4]arenes tetra-esters \mathbf{L}_3^{17} and \mathbf{L}_4^{17} were obtained, respectively by reaction of \mathbf{L}_1 and \mathbf{L}_2 with the appropriate bromoethylester in presence of Na₂CO₃ as base in acetonitrile at reflux temperature for 72 h in 25.5 and 28% yields. The compounds \mathbf{L}_5^{17} and \mathbf{L}_6^{17} were obtained by the same procedure in presence of a catalytic amount of sodium iodide (respectively 33 and 40% yields).

The cone conformation of all ligands were reflected in the characteristic AB system for the methylene groups bridging the aromatic rings in the ¹H and ¹³C NMR spectrum.¹⁹ In the case of L_1 and L_2 , NMR spectrum show the characteristics two AB system at, respectively $\delta = 3.57$, 4.53 ppm and $\delta = 3.36$, 4.86 for Ar-CH₂-Ar groups and one signal at 31.87 and 31.43 for the corresponding carbons, both indicate a cone conformation of L_1 and L_2 probably due to the strong hydrogen bonding between the free phenol hydrogens and the carbonyl groups.²⁰ In the case of L_3 and L_4 , the cone conformation is proven by the presence of two doublets, respectively at $\delta = 3.45$, 5.00 ppm, $J_{AB} = 13.85$ Hz and 3.43, 4.99 ppm, $J_{AB} = 13.75$ Hz for ArCH₂Ar groups and one signal at, respectively $\delta = 31.67$ and 39 ppm of the corresponding carbons, both indicate a cone conformation.

^{*} Corresponding author. Tel.: (33)4.72.44.80.14; fax: (33)4.72. 44.84.38; e-mail: i.bonnamour@cdlyon.univ-lyon1.fr

^{0040-4039/02/} $\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00690-1

Scheme 1. Synthetic pathway of azocalix[4]arenes amide and ester.

For the compounds L_5 and L_6 , the NMR spectrum confirmed the presence for an expanded AB system at, respectively $\delta = 3.51$, 4.77 ppm, $J_{AB} = 14.13$ Hz and $\delta = 3.48$, 4.78 ppm, $J_{AB} = 14.0$ Hz for ArCH₂Ar groups and one signal at, respectively $\delta = 31.76$ and 31.67 ppm of the corresponding carbons.

The infrared analysis of L_1 and L_2 shows a broad absorption at 3390 cm⁻¹, revealing intramolecular hydrogen bonding. This correlates with a 'cone' conformation, where the remaining phenolic hydrogen are at a suitable distance from the vicinal oxygens.

In conclusion, we have developed a convenient method which permits to graft selectively both azo groups on the upper rim and ester or amide functions on the lower rim of calix[4]arene. These new compounds offer the advantage to be colored, in cone conformation and bi-, tri-functionalized. Further investigations in metal complexation field are under way.

Acknowledgements

We are grateful to the Ministère de l'Education Nationale for financial support. We thank the Conseil Régional Rhône-Alpes for a grant MIRA Sup. to H. Halouani.

References

- 1. Oueslati, F.; Dumazet-Bonnamour, I.; Lamartine, R. *Tetrahedron Lett.* 2001, 42, 8177–8180.
- Lazzarotto, M.; Nachtigall, F. F.; Vencato, I.; Nome, F. J. Chem. Soc., Perkin Trans. 2 1998, 995–998.
- Van der Veen, N.; Egberink, R. J. M.; Engbersen, J. F. J.; Van Veggel, F. J. C. M.; Reinhoudt, D. N. Chem. Commun. 1999, 681–682.
- 4. Israëli, Y.; Detellier, C. J. Phys. Chem. B 1997, 101, 1897–1901.
- Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681–8691.
- Beer, P. D.; Drew, M. G. B.; Kan, M.; Leeson, P. B.; Ogden, M. I.; Williams, G. *Inorg. Chem.* 1996, 35, 2202– 2211.
- Casnati, A.; Fischer, C.; Guardigli, M.; Isernia, A.; Manet, I.; Sabbatini, N.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1995, 395–399.
- Sabbatini, N.; Guardigli, M.; Mecati, A.; Balzani, V.; Ungaro, R.; Ghidini, E.; Casnati, A.; Pochini, A. J. Chem. Soc., Chem. Commun. 1990, 878–879.
- Hebbink, G. A.; Klink, S. I.; Oude Alink, P. G. B.; Van Veggel, F. C. J. M. *Inorg. Chem. Acta* 2001, 317, 114– 120.
- Nomura, E.; Takagaki, M.; Nalaoka, C.; Uchida, M.; Taniguchi, H. J. Org. Chem. 1999, 64, 3151–3156.

- Beer, P. D.; Drew, M. G. B.; Leeson, P. B.; Ogden, M. I. J. Chem. Soc., Dalton Trans. 1995, 1273–1279.
- No, K. H.; Kim, J. S.; Shon, O. J.; Yang, S. H.; Suh, I. H.; Kim, J. G.; Bartsch, R. A.; Kim, J. Y. J. Org. Chem. 2001, 66, 5976–5980.
- Ma, Q.; Ma, H.; Su, M.; Wang, Z.; Nien, L.; Liang, S. Anal. Chim. Acta 2001, 439, 73–79.
- Van der Veen, N.; Rozniecka, E.; Woldering, L. A.; Chudy, M.; Huskens, J.; Van Veggel, F. C. J. M.; Reinhoudt, D. N. *Chem. Eur. J.* 2001, *22*, 4878–4886.
- Grote gansey, M. H. B.; Verboom, W.; Van Veggel, F. C. J. M.; Vetrogon, V.; Arnaud-Neu, F.; Schwing-Weill, M.-J.; Reinhoudt, D. N. J. Chem. Soc., Perkin Trans. 2 1998, 2351–2360.
- Faidherbe, P.; Wieser, C.; Matt, D.; Harriman, A.; De Cian, A.; Fischer, J. *Eur. J. Inorg. Chem.* **1998**, 451–457.
- 17. General: Solvents were purified and dried by standard methods prior to use. All reactions were carried out under nitrogen. Column chromatography was performed with silica gel 60 (0.040–0.063 mm) from Merck. Melting points were recorded on an Electrothermal 9100 capillary apparatus and were uncorrected. Infrared was performed on a Mattson 5000 FT apparatus (ν in cm⁻¹). ¹H and ¹³C NMR spectra were recorded on a Brucker AM 300 (300.13 and 75 MHz), (CDCl₃, TMS as internal standard, chemical shifts in ppm, *J* in Hertz). Mass spectra were obtained by electrospray technique (positive mode). Infra-red spectra were performed on a Spectrum One Perkin–Elmer apparatus (ν in cm⁻¹).

General procedure for the syntheses of bis(phenylazo- and 4-nitrophenylazo)-substituted bis(ester)-calix[4]arene L_1 and L_2 . Calix[4]arenes, substituted on the upper rim by bis(phenylazo and 4-nitrophenylazo) and on the lower rim by bis(ester) groups, were synthesized according to the following method: 25,27-di(ethoxycarbonylmethoxy)-26,28 (di-hydroxy) calix[4]arene L_o (2 g, 3.37 mmol) and the BF₄⁻ salt benzenediazoniums or *p*-nitrobenzene diazoniums (8.42 mmol) were dissolved in THF (100 ml). The reaction was initiated by the addition of pyridine (5 ml) to the cooled THF solution at 0°C. After 48 h the mixture was evaporated to dryness. The residue was dissolved in minimum pyridine. The addition of methanol has given an orange precipitate which was recovered by filtration and washed with methanol.

5,17-Bis(phenylazo)-26,28-dihydroxy-25,27-di(ethoxy carbonylmethoxy)calix[4]arene L_1 was purified by chromatography column on silica gel (ethyl acetate/hexane; 4:6 (v/v)) to yield L_1 as an orange solid (1.4 g, 52%). Mp: 248–249°C. ¹H NMR (CDCl₃) δ = 8.29 (s, 2H, OH), 7.85 (d, 4H, J = 7.17 Hz, H-diazo), 7.75 (s, 4H, H-diazo), 7.50-7.39 (m, 6H, H-diazo), 7.02 (d, 4H, J=7.53 Hz, H_{Ar}), 6.78 (t, 2H, J=7.53 Hz, H_{Ar}), 4.74 (s, 4H, OCH₂CO), 4.53, 3.57 ('q', AB, J_{AB}=13.17 Hz, $ArCH_2Ar$), 4.37 (q, 4H, J=7.14 Hz, OCH_2CH_3), 1.36 (t, 6H, J=7.17 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) $\delta =$ 169.16 (CO), 156.93, 153.43, 152.65, 146.09, 132.91, 130.36, 130.02, 129.40, 128.87, 126.30, 124.30, 122.76 (C_{Ar}), 72.90 (OCH₂CO), 61.99 (OCH₂CH₃), 31.87 $(ArCH_2Ar)$, 14.58 (OCH_2CH_3) . ES-MS m/z: 805.3 [M+]H]⁺ (calcd. 805.9), 827.3 [M+Na]⁺ (calcd. 827.9). IR: 3381.7 (OH), 2981.5 (CAr-H), 2929.6 (CH2, CH3), 1749.9 (CO), 1473.1, 1461.3, 1441.5 (C=C, N=N).

5,17-Bis(4-nitrophenylazo)-26,28-dihydroxy-25,27-di(ethoxycarbonylmethoxy)-calix[4]arene L2 was purified by chromatography on silica gel (ethyl acetate/hexane; 4:6 (v/v)) to yield L₂ as a red solid (1.6 g, 40%). Mp: 247–248°C. ¹H NMR (C₅D₅N) $\delta = 9.26$ (brs, 2H, OH), 8.41 (d, 4H, J=7.14 Hz, H-diazo), 8.24 (s, 4H, H_{Ar}), 8.10 (d, 4H, J=6.96 Hz, H-diazo), 7.04 (d, 4H, J=7.74 Hz, H_{Ar}), 6.49 (t, 2H, J=7.53 Hz, H_{Ar}), 4.98 (s, 4H, OCH₂CO), 4.86, 3.36 ('q', AB, J_{AB}=12.99 Hz, ArCH₂Ar), 4.28 (q, 4H, J=7.17 Hz, OCH₂CH₃), 1.19 (t, 6H, J=7.14 Hz, OCH₂CH₃); ¹³C NMR (C₅D₅N) δ = 169.15 (CO), 158.58, 156.34, 152.95, 148.23, 146.28, 132.69, 129.81, 125.83, 125.40, 125.01, 123.59, 123.12 (C_{Ar}), 72.82 (OCH₂CO), 61.39 (OCH2CH3), 31.43 (ArCH2Ar), 13.90 (OCH2CH3). ES-MS m/z: 917.2 [M+Na]⁺ (calcd. 917.9). IR: 3389.6 (OH), 2982.1, 2933.5 (C-H), 1740.6 (CO), 1588.2, 1519.2, 1473.5, 1427.5 (OH, H_{Ar}, C=C).

General procedure for the synthesis of bis(phenylazo or 4-nitrophenylazo)-substituted tetra (ester)calix[4]arenes L_3 and L_4 . A solution of L_1 or L_2 (0.249 mmol) and Na₂CO₃ (0.996 mmol) were stirred for 2 h under nitrogen in dry acetonitrile (20 ml) at reflux temperature. After the addition of ethyl bromoacetate (1 mmol), the mixture was heated under reflux for 72 h. After filtration, the solvent was removed in vacuum, the residue was taken up in CH₂Cl₂ (20 ml) and washed with a saturated aqueous ammonium chloride solution (2×10 ml) and water (20 ml). After evaporation of the solvent, the solid residue was submitted to the column chromatography (silica gel, ethyl acetate:hexane; 2:8 (v/v)).

5,17-Bis(phenylazo)-25,26,27,28-tetra(ethoxycarbonylmethoxy)calix[4]arene L₃ (0.062 g, 25.5%). Mp: 173–174°C. ¹H NMR (CDCl₃) $\delta = 7.89$ (d, 4H, J = 7.89 Hz, H-diazo), 7.69 (s, 4H, HAr), 7.52-7.46 (m, 6H, H-diazo), 6.45 (brs, 6H, H_{Ar}), 5.04 (s, 4H, OCH₂CO), 5.00, 3.45 ('q', AB, $J_{AB} = 13.85$ Hz, ArCH₂Ar), 4.62 (s, 4H, OCH₂CO), 4.31 (q, 4H, J=7.14 Hz, OCH₂CH₃), 4.26 (q, 4H, J=6.96 Hz, OCH_2CH_3), 1.36 (t, 6H, J = 7.17 Hz, OCH_2CH_3), 1.33 (t, 6H, J=7.14 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) $\delta =$ 170.64, 169.87 (CO), 160.07, 155.32, 153.27, 148.55, 137.27, 133.15, 130.84, 129.43, 128.81, 124.27, 123.79, 122.99 (C_{Ar}), 72.15, 71.56 (OCH₂CO), 61.96, 54.98 (OCH2CH3), 31.97 and 31.67 (ArCH2Ar), 14.66 and 14.61 (OCH₂CH₃). ES-MS m/z: 977.3 [M+H]⁺ (calcd. 978.08), 999.4 [M+Na]⁺ (calcd. 1000.07). IR: 2985.1 (C_{Ar}-H), 2933.4 (CH₂, CH₃), 1756.2 (CO), 1587.7, 1459.5, 1441.8 (H_{Ar}, N=N, C=C).

5,17-Bis(4-nitrophenylazo)-25,26,27,28-tetra(ethoxycarbonylmethoxy)calix[4]-arene L₄. (0.075 g, 28.2%). Mp: 104– 106°C. ¹H NMR (CDCl₃) δ = 8.27 (d, 4H, *J* = 6.96 Hz, H-diazo), 7.88 (d, 4H, *J* = 7.17 Hz, H-diazo), 7.57 (s, 4H, H_{Ar}), 6.54 (brs, 6H, H_{Ar}), 4.99, 3.43 ('q', AB, *J*_{AB}=13.75 Hz, ArCH₂Ar), 4.97 (s, 4H, OCH₂CO), 4.65 (s, 4H, OCH₂CO), 4.25 (q, 4H, *J* = 7.14 Hz, OCH₂CH₃), 4.23 (q, 4H, *J* = 7.14 Hz, OCH₂CH₃), 1.33 (t, 6H, *J* = 7.14 Hz, OCH₂CH₃), 1.30 (t, 6H, *J* = 7.35 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ = 170.33, 170.06 (CO), 160.98, 156.23, 155.64, 148.62, 148.45, 137.11, 133.49, 129.04, 124.95, 124.77, 123.85, 123.47 (C_{Ar}), 72.03, 71.64 (OCH₂CO), 61.21, 61.13 (OCH₂CH₃), 31.96 (ArCH₂Ar), 14.64, 14.60 (OCH₂CH₃). ES-MS *m*/*z*: 1067.2 [M+H]⁺ (Calcd. 1068.08), 1089.1 [M+Na]⁺ (calcd. 1090.06). IR: 2981.9 (C_{Ar}-H), 2931.7 (CH₂, CH₃), 1753.8 (CO), 1735.1 (CO), 1607.4, 1589.0, 1523.1, 1461.8, 1444.0 (H_{Ar}, C=C, N=N). **General procedure for the synthesis of L₅ and L₆.** A mixture of L₁ or L₂ (0.25 mmol), anhydrous sodium carbonate (0.265 g, 2.5 mmol), *N*-(chloroacetyl) glycine ethylester (1.75 mmol) and sodium iodide (catalytic amount) in acetonitrile (35 ml) were refluxed for 72 h. The solvent was then evaporated and the residue was taken up in CH₂Cl₂ (30 ml), washed with a saturated aqueous ammonium chloride solution (2×15 ml) and water (2×15 ml). After evaporation of the solvent the product was triturated with MeOH and filtered off and dried to give pure L₅ or L₆ as a red solid.

5,17-Bis(phenylazo)-26,28-bis{[(ethoxycarbonyl) methylcarbamoyl|methoxy} - 25,27 - di(ethoxycarbonylmethoxy) calix[4]arene L₅ (0.09 g, 33%). Mp: 92–94°C. ¹H NMR (CDCl₃) $\delta = 8.28$ (t, 2H, J = 6.24 Hz, HNCH₂), 7.86 (d, 4H, J=7.14 Hz, H-diazo), 7.64 (s, 4H, H_{Ar}), 7.46-7.43 (m, 6H, H-diazo), 6.47 (t, 2H, J = 6.21 Hz, H_{Ar}), 6.40 (d, 4H, J = 6.78 Hz, H_{Ar}), 4.92 (s, 4H, OCH₂CO), 4.77, 3.51 ('q', AB, $J_{AB} = 14.13$ Hz, ArCH₂Ar), 4.54 (s, 4H, OCH₂CO), 4.29-4.16 (m, 12H, HNCH₂CO and OCH_2CH_3), 1.32 (t, 6H, J = 7.17 Hz, OCH_2CH_3), 1.30 (t, 6H, J = 6.96 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) $\delta =$ 171.09, 170.00, 169.89 (CO), 160.68, 154.98, 153.07, 148.48, 135.93, 132.85, 131.07, 129.44, 129.39, 124.62, 123.05 (C_{Ar}), 74.48, 72.91 (OCH₂CO), 61.84, 61.61 (OCH₂CH₃), 40.94, 31.76 (ArCH₂Ar), 14.55 (OCH₂CH₃). ES-MS m/z: 1091.2 [M+H]⁺ (calcd. 1092.19), 1113.3 [M+Na]⁺ (calcd. 1114.17). IR: 3395.3 (NH), 2964, 2932.8 (C-H), 1741.7, 1680.3 (CO), 1583.4, 1531.9, 1461.7, 1434.3 (H_{Ar}, C=C).

5,17 - Bis(4 - nitrophenylazo) - 26,28 - bis{[(ethoxycarbonyl)methylcarbamoyl] - methoxy} - 25,27 - di(ethoxycarbonylmethoxy)calix[4]arene L₆ (0.12 g, 40.6%). Mp: 108-110°C. ¹H NMR (CDCl₃) $\delta = 8.30$ (t, 2H, J = 6.3 Hz, HNCH₂), 8.19 (d, 4H, J=9.03 Hz, H-diazo), 7.81 (d, 4H, J=9.06, H-diazo), 7.44 (s, 4H, H_{Ar}), 6.62 (brm, 6H, H_{Ar}), 4.97 (s, 4H, OCH₂), 4.78, 3.48 ('q', AB, J_{AB}=14.10 Hz, ArCH₂Ar), 4.64 (s, 4H, OCH₂), 4.24–4.15 (m, 12H, CH_2NH and OCH_2CH_3 , 1.30 (t, 6H, J=7.17, OCH_2CH_3), 1.29 (t, 6H, J=6.96, OCH_2CH_3). ¹³C NMR $(CDCl_3) \delta = 170.80, 170.43, 169.61 (CO), 160.78, 155.91,$ 155.66, 148.47, 135.88, 133.43, 129.70, 124.89, 124.84, 124.51, 123.49 (C_{Ar}), 74.41, 72.65 (OCH₂CO), 61.73, 61.65 (OCH₂CH₃), 41.03 (NCH₂CO), 31.67 (ArCH₂Ar), 14.56, 14.49 (OCH₂CH₃). ES-MS *m*/*z*: 1181.2 [M+H]⁺ (calcd. 1182.18), 1203.2 [M+Na]+ (calcd. 1204.16). IR: 3386.5 (N-H), 2981.2 (C-H), 1740.4, 1679.9 (CO), 1588.4, 1522.7, 1462.6, 1441.4 (H_{Ar}, C=C).

- Shinkai, S.; Araki, K.; Shibata, J.; Tsugawa, D.; Manabe,
 O. J. Chem. Soc., Perkin Trans. 1 1990, 3333–3337.
- Jaime, C.; De Mendoza, J.; Prados, P.; Nieto, P. M.; Sanchez, C. J. Org. Chem. 1991, 56, 3372–3376.
- Creaven, B. S.; Deasy, M.; Gallagher, J. F.; McGinley, J.; Murray, B. A. *Tetrahedron* 2001, *57*, 8883–8887.